
Review on SQL Injection Attacks: Detection
Techniques and Protection Mechanisms

Sankaran. S , Sitharthan. S , Ramkumar. M

 Department of Computer Science Engineering, Saveetha University
Saveetha Nagar, Thandalam Chennai-602105, Tamil Nadu, India

Abstract— When a Computer user interacts in the internet
through the World Wide Web environment, sending E-Mail,
surfing the web and involving in forums and online
discussions, lots of data is being created which may have
user’s personal information. If this data is retrieved by third
party tools and techniques, it may cause a break in the user’s
privacy. Hence, the big question is protecting the web
environment against Cyber-Attack. SQL Injection Attacks
have been around for over a decade and yet most web
applications being deployed today are vulnerable to it. The
bottom line is that the web has made it easy for new
developers to develop web applications without concerning
themselves with the security flaws, and that SQL Injection is
thought to be a simple problem with a very simple remedy.
For the purpose of security, we have proposed various attack
methodologies, and also the testing frameworks and
prevention mechanisms.

Keywords— Classification, Detection, Prevention, SQL
injection attacks, Web application security.

I. INTRODUCTION
As per the Open Web Application Security Project
(OWASP), the Structured Query Language Injection Attack
(SQLIA) is regarded as number one web application
vulnerability in the past years. In this modern computer era
database has become very essential in any web
applications. All the web applications that are being
developed has database connectivity in some form, hence
making it database dependent. In an average about 71
attempts of attack is performed on an application. Some
applications experience about 1300 times in an hour at the
peak [1].

A successful SQLIA can

 Read/Extract sensitive or confidential data from
database.

 Modify data in database
(Insertion/Updating/Deletion).

 Executing operations such as shutdown of the
DBMS and other harmful operations.

The insertion or injection of an SQL Query via the input
data from the client to the application results in an SQL
injection attack. Malicious input statements are given in an
SQLIA. This malicious inputs when executed at the
database result in unpredicted behavior and thus the
security of the database is compromised. The input given
by the attacker is executed as it is. The database cannot
differentiate between an input given by the clients/attacker
and a malicious input [2].

II. TYPES OF SQLIA
In this section the various types of SQL injection attacks
are described and discussed in greater detail. Each of the
attack types is given a name, one or more intent of attack
and attack description in detail, example for the attack and
a collection of references that discuss these attacks in a
more detailed manner.
Most of these attacks are not performed separately but are
combined together to perform some actions depending on
the aim of the attacker.
A. Tautologies
Attack Intent: Identifying injectable parameters bypassing
authentication, extracting data.
Description: In this type of attack, a code is injected into
the input fields of the web application and one or more
conditional statements are executed that are always true
when executed. This is one of the most widely and
commonly used method to bypass authentication and data
extraction. If the attack was performed successfully, it
returns a set of record, or a result if some action is
performed.
Example:
The query for login is:
SELECT * FROM user_info WHERE logID=’’ or 1=1 --
AND pass1=’’
The conditional statement OR (1=1) makes the entire
WHERE clause to a tautology. The query evaluated true for
all records in the table and returns them. In the above
example, there is a value returned and hence a not null
value is evaluated, making the authentication process
successful allowing the user to login successfully without
valid credentials. This method is also employed to extract
data from the database.
References: [16, 3]

B. Illegal/Logically Incorrect Queries

Attack Intent: Extraction of data, performing database
finger-printing, identify injectable parameters.
Description: When a logically or wrong SQL Query is sent
to the database, error messages are sent from the databases
which may contain sometimes useful information that can
be used for debugging. This information may sometimes be
helpful for the attacker in finding vulnerabilities in the
system and hence in the database of the application also.
 Example-
Select * from <table name> where userId = <id> and
password = <wrongPassword> or 1=1;
This is a query for sending an error message for wrong
password.

Sankaran. S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4019-4022

www.ijcsit.com 4019

In this type of attack, the attacker gets to know the
information of the table such as the name of the table and
the field names of the fields in the table, which helps him
for a more coordinated attack at the later stage. Credit
cards are a classic example for this type of an attack in
which the name of the table and details are gathered.
Similarly target specific attacks can be performed if the
schema of the database is known.
 References: [3, 17]

C. Union Query
Attack Intent: Extraction of data, Authentication bypassing.
Description: In this attack type, a dataset is returned that is
a result that is an UNION of the original query and the
result of the injected query that is inserted into the
vulnerable parameter. The UNION query combines two or
more queries together and gives the result which gives the
fetched rows from the queries participating in the UNION.
Example: An attacker could inject the text “’ UNION
SELECT cardNo from Credit Cards where acctNo=10032 -
-” into the login field, which produces the following query:
SELECT accounts FROM users WHERE login=’’ UNION
SELECT cardNo from CreditCards where acctNo=10032 --
AND pass=’’ AND pin=
The original first query returns a null set since there is no
logical equal to “”, but the second query returns
information from the table. In this example, it returns the
column “CardNo” for the account “10032”.
References: [4, 5]

D. Piggy-backed Queries
Attack Intent: Extracting data, adding or modifying data,
performing denial of service, executing remote commands.
Description: In this type of attack, the statement after the
“;” is executed. It is a very dangerous type of attack which
could damage the database, sometimes may destroy it also.
It could bring large loss of data if it is successfully
executed.
Example:
SELECT account FROM user WHERE login=’abc’ AND
pass=’’; drop table user --’ AND pin=123
The above query is generated if the attacker inputs “’; drop
table users --” into the pass field.
The execution of the query is done, and after the first query
the delimiter is read and the second injected query is
executed. After the successful execution of the second
injected query the table user is dropped, destroying some
information that may be valuable. Other queries can be
used to insert new values, execute stored procedures, etc.
References: [4, 5]

E. Stored Procedure
Attack Intent: Escalating privileges, denial of service,
remote command execution.
Description: The database engine runs the routine that are
stored, these are known as Stored Procedures. These stored
procedures may be user defined or that are provided by the
database by default. The different ways of attacking the
database are dependent on the type of stored procedure.
Example:
CREATE PROCEDURE DBO.isAuthenticated

@username varchar2, @pass varchar2, @pin int
EXEC("SELECT account FROM user
WHERE login=’" +@username+ "’ and pass=’"
+@password+ "’ and pin=" +@pin); GO
In the example, the constructed query string at the line 5 is
replaced by a call to the stored procedure. The
authentication of the user’s credentials is indicated by a
true/false value that is returned by the stored procedure.
The stored procedure starts executing if the attacker inserts
the code “’; SHUTDOWN; --” into the username field or
the password field. This generates the query:
SELECT accounts FROM users WHERE login=’abc’ AND
pass=’ ’; SHUTDOWN; --AND pin=
This is similar to a Piggy backed attack where the statement
after “;” is executed resulting in the shutdown of the
database. Successful execution of this attack results in huge
amount of loss.
References: [4, 18, 6, 5]

F. Blind Injection

Attack Intent: Extraction of data, Theft of data.
 Description: The error messages that are displayed by the
database are hidden by the developers for security reasons
and only the generic error pages are displayed to the user
when it is accessed, making difficult for an attacker to get
information from the database [19]. It is when an attacker
sends true/false questions to steal/theft data.
Example: SELECT name FROM <tablename> WHERE
id=<username> and 1 =0 -- AND pass = SELECT name
FROM <tablename> WHERE id=<username> and 1 = 1 --
AND pass =
After execution of the queries, error messages are returned.
If the web application is secure, there is a chance of
injection if the inputs are not validated in advance. After
the insertion of first query, if the attacker receives error, he
does not know whether it was due to input validation or
query formation error. But, the id field is vulnerable if there
is no error message after the submission of second query.
References: [4, 6]

G. Inference
Attack Intent: Data extraction, Identify injectable
parameter, determine database schema.
Description: In this type of attack, the query is modified to
recast it in the form of an action that is executed based on
the answer to a true/false question about data values in the
database [8]. In this type of injection attack the attacker has
difficulty in attacking the site that has been secured so
much that there is no detailed error messages that are
displayed. Even after a successful injection attack there is
no useful feedback or response from the database. Hence,
the attacker uses different methods for extracting details
from the database. The attacker inserts commands into the
site and then observes how the response of the site is. By
this method, the attacker comes to know the parameters that
are vulnerable to attack and also additional information
about the database. Most commonly there are two attacks
possible, they are extracting the data, detection of
vulnerable parameters.
References: [6, 1]

Sankaran. S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4019-4022

www.ijcsit.com 4020

H. Alternate Encodings
Attack Intent: Vulnerability detection evasion.
Description: In this type, the injection query is modified by
alternate encoding, changing characters to some other
characters in the queries. By this way, the attacker evades
filters for “wrong characters”.
All different kinds of SQL injection attack can be hidden
using this method.
Example- SELECT name FROM <table_name> WHERE
id=’’ and password=O; exec (char (O
x73687574646j776e))
The hexadecimal encoded character are taken as input that
is used as char function that returns actual character. This
encoded string, shutdowns the database when the command
is executed.
References: [6, 1, 3]

III. SQLIA DETECTION AND PREVENTION

There are many methods and tools for detection of SQLIA
that have been proposed. Following are some tools
invented to detect and prevent the SQL injection attack.

A. JDBC-Checker:
It is a tool that detects and prevents taking into advantage
the type mismatch in the queries that are dynamically
generated [7].

B. ADMIRE:
ADMIRE is a tool that is used to identify and moderate the
effect of SQLIA by thorough and step by step methods [7].

C. SQL-PROB:
This is a detection tool that uses SQL proxy based blocker
that fetches input from SQL query of the application and
checks with the syntactical structure of the query. It
provides protection and security to the frontend web server
and the backend database by means of integrating
seamlessly with the existing operating environments [8].

D. WAVES:
This is a testing tool that uses a black box testing technique
for testing vulnerabilities in web application for SQL
injection. This tool finds all possible points and identifies
them through which injection can be done. The machine
learning is done by which the attacks are build that target
these points of vulnerability and also monitors them, how
the response of the application is to these attacks [9].

E. SQLRand:
The SQL injection attack of the web server is prevented by
this system. Randomized SQL query language is used to
detect and abort the injected queries. There is a proxy
server that is setup in between the client server and the
SQL server. The query is conveyed to the server which is
received from the server as de-randomized requests. The
proxy parser in the proxy server fails to recognize the
randomized query and also reject it, if a successful SQLIA
is done [10].

F. POSITIVE TAINTING:
The trusted data is identified and marked in this type.
Syntax aware evaluation is performed on the trust marked

strings that are tracked. Characters in a string that are not
trust marked are not allowed to pass the database [11].

G. AMNESIA:
The SQLIA’s are detected and prevented by a means of
static and dynamic analysis. The four main steps are:
1. Identify hotspot: The hotspot points are identified in

this step that issue the underlying database SQL
queries.

2. Building of SQL query model: A model is built for
each one of the hotspot representing all the probable
queries that may be generated at that hotspot.

3. Instrument Application: Call to each runtime monitor
is added at each hotspot in application.

4. Runtime monitoring: It automatically rejects and
reports the dynamically generated queries that do
match against the SQL query model [12].

H. SQL DOM:
In this detection technique, the API becomes insufficient
and cumbersome by creating every per possible operation
per column one method and one class table and for one
class table one class per table. Unnecessary object
duplication can be avoided by statically accessing all the
mapping information of the database structure [13].

I. VIPER:
SQL injection attack is detected using a heuristic approach.
The generation of SQL queries is guided by the knowledge
base of the heuristics. The input forms of the hyperlinks
structure is identified at first. Standard SQL attacker are
stacked. The output of the web application is matched with
library of regular expression that is related to the error
messages that a database produces. The attack is continued
using the text that is mined from the error messages. It is
done with objective of retrieving the schema of the
database [14].

J. CANDID:
In CANDID, the actually issued query is compared to the
legitimate query structure mined for the same path that is
dynamically mined by the program’s legitimate query
structure at each path by executing the program with the
valid and non-attacking inputs [15].

K. Some other Prevention Techniques:
1. Interpretation at web server level
SQL injection attack need to be prevented at the web server
itself. It is also one of the most effective ways to prevent
SQLIA. An open source web application that can be used is
Mod –Security that is installed on the server and alerts the
host, whenever a specific keyword is come across [19].
2. Interpretation at language level
The SQLIA’s can be prevented my writing source code that
is secure, hence the attack becomes difficult to be
performed. One of the way is PHP escaping. The most
commonly used validation method is data type validation,
most of developers do not know it is an in-effective way
and can be easily attacked or bypassed.
PHP helps in locating and replacing some specified
characters by double quotes (“”). The latest version of PHP

Sankaran. S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4019-4022

www.ijcsit.com 4021

should be used for security purpose and care should be
given for coding [20].
3. User Privileges
The concept of dividing the admin privileges into admin
user accounts rather a superuser that is very dangerous and
should be avoided. One admin account should not exceed
more than two operations, hence, even if it is compromised
there would be not much damage inflicted to the database.
4. Encrypting Data
Encrypting data is another method of prevention. By
encrypting the data, the attacker gains access to the
encrypted data that is of no use unless decrypted. Sensitive
data can be encrypted. The keys of the data that is
encrypted can be stored in a separate table or can also be
stored in a separate server for high security and can be
linked in a manner that is efficient. This is up to the choice
of the database admin.
5. Other precautions
The database should be developed in such a manner that
only the developer that can be trusted completely knows
the full details of the database and only to some extent to
the database admin and the staff. Admin should monitor
regularly for access by intruders and suspicious activities.
The database software should be updated at a regular
interval for higher security.

IV. CONCLUSION

In today’s modern era, the possibility of an SQL injection
attack at the web applications are high. The attacker can
modify, delete data, perform database/server shutdown
taking advantage of the vulnerabilities in the system. This
paper presents the various attack method, their
classification using which the system administrators and
programmers can understand about SQLIA and secure the
web application.
However, as technology develops, so will the threats and
techniques used by the malicious users. As storage on in
internet is of more trend nowadays care should be taken to
secure the data from being stolen by malicious users. Hence
securing of the system against SQL injection attack is of
great importance.

ACKNOWLEDGEMENTS

I sincerely thank my guide Asst Professor Mr.
Ramkumar. M for his proper guidance and valuable
suggestions and also the institution for their support.

REFERENCES
[1] J. V. William G.J. Halfond and A. Orso, ―A classification of sql

injection attacks and countermeasures,ǁ 2006.
[2] A. Tajpour; M. Masrom; M. Z. Heydari.; S. Ibrahim; "SQL injection

detection and prevention tools assessment, " Proc. Of ICCSIT 2010,
vol.9, no., pp.518-522, 9-11 July 2010.

[3] Indrani Balasundaram. , Dr. E. Ramara. An Approach to Detect and
Prevent SQL Injection Attacks in Database Using Web Service.
IJCSNS International Journal of Computer Science and Network
Security, VOL.11 No.1, YEAR 2012

[4] C. Anley. Advanced SQL Injection In SQL Server Applications.
White paper, Next Generation Security Software Ltd., 2002.

[5] S. Labs. SQL Injection. White paper, SPI Dynamics, Inc.,
[6] Abhishek Kumar Baranwal. Approaches to detect SQL injection and

XSS in web applications. EECE 571B, TERM SURVEY PAPER,
APRIL 2012

[7] Neha Singh,Ravindra Kumar Purwar,SQL Injection –A HazardTo
web applications, International Journal of Advanced Research in
computer Science and Software Engineering,vol.2,Issue 6,June
2012,pp. 42-46.

[8] Anyi Liu , Yi Yuan , Duminda Wijesekera , Angelos
Stavrou,SQLProb: A Proxy-based Architecture towards Preventing
SQL Injection Attacks,

[9] Atefeh Tajpour , Suhaimi Ibrahim,Mohammad Sharifi,Web
Application Security by SQL Injection Detection
Tools,IJCSI,International Journal Computer Science
Issues,Vol.9,Issue 2,No.3,March 2012,332-339

[10] StephenW.Boyd,AngelosD.Keromyti,SQLrand:Preventing SQL
Injection Attacks.

[11] Devata R. Anekar ,Prof. A. N. Bhute,SQL Injection Detection and
Prevention Mechanism using Positive Tainting and Syntax Aware
Evaluation, International Journal of Advances in Computing and
Information Researches, ISSN:2277-4068, Volume 1– No.3,August
2012

[12] WilliamG.J.Halffond,AlessandroOrso,Preventing
SQLInjectionAttacksUsingAMNESIA,ICSE,2006,Shanghai,China

[13] Etinene Janot ,Pavol Zavarsky,Preventing SQL Injection in online
applications:Study,Recommendations and Java Solution Prototype
based on SQL DOM,Application Security
Conference,Ghent,Belgium,19-22 May 2008.

[14] Angelo Ciampa,Corrado Aaron Visaggio,Massimiliano Di Penta,A
heuristic-based approach for detecting SQL Injection vulnerabilities
in Web applications,ICSE Capetown,2-8 May 2010,pp 43-49.

[15] Sruthi Bandhakavi,Prithvi Bisht,P. Madhusudan,V.N.
Venkatakrishnan, CANDID: Preventing SQL Injection Attacks using
Dynamic Candidate Evaluations

[16] M. Dornseif. Common Failures in Internet Applications May 2005.
http://md.hudora.de/presentations/

[17] D. Litchfield. Web Application Disassembly with ODBC Error
Messages. Technical document, @Stake,
Inc.,2002.http://www.nextgenss.com/papers/webappdis.doc.
2002.http://www.spidynamics.com/assets/documents/
WhitepaperSQLInjection.pdf.

[18] F.Bouma.Stored Proceduresare Bad, O‘kay?Technicalreport, Asp.Net
Weblogs,November2003.http://weblogs.asp.net/fbou ma/ archive
/2003/11/18/38178.aspx.

[19] Mod security http://www.modsecurity.org/
[20] Preventing SQL injection by language level interpretation, PHP

escaping http://en.wikipedia.org/wiki/SQL_injection

Sankaran. S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4019-4022

www.ijcsit.com 4022

